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Review and recommendations for
univariate statistical analysis of spherical

equivalent prediction error for IOL
power calculations

Jack T. Holladay, MD, MSEE, Rand R. Wilcox, PhD, Douglas D. Koch, MD, Li Wang, MD, PhD

Purpose: To provide a reference for study design comparing
intraocular lens (IOL) power calculation formulas, to show that the
standard deviation (SD) of the prediction error (PE) is the single
most accurate measure of outcomes, and to provide the most
recent statistical methods to determine P values for type 1 errors.

Setting: Baylor College of Medicine, Houston, Texas, and Uni-
versity of Southern California, Los Angeles, California, USA.

Design: Retrospective consecutive case series.

Methods: Two datasets comprised of 5200 and 13301 single
eyes were used. The SDs of the PEs for 11 IOL power calculation
formulas were calculated for each dataset. The probability density
functions of signed and absolute PE were determined.

Results: None of the probability distributions for any formula
in either dataset was normal (Gaussian). All the original signed

PE distributions were not normal, but symmetric and lepto-
kurtotic (heavy tailed) and had higher peaks than a normal
distribution. The absolute distributions were asymmetric and
skewed to the right. The heteroscedastic method was much
better at controlling the probability of a type I error than older
methods.

Conclusions: (1) The criteria for patient and data inclusion were
outlined; (2) the appropriate sample size was recommended; (3) the
requirement that the formulas be optimized to bring the mean error
to zero was reinforced; (4) why the SD is the single best parameter
to characterize the performance of an IOL power calculation
formula was demonstrated; and (5) and using the heteroscedastic
statistical method was the preferred method of analysis was
shown.
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APubMed search of the past 5 years revealed 239
articles published on intraocular lens (IOL) power
calculation formulas. The sample sizes ranged from 1

to 18 001 cases, and outcomes of mean prediction error (PE),
mean absolute PE, median PE, associated SDs, and mean
absolute deviations (MADs) were reported. There was no
consistency in the reporting or the statisticalmethods used to
compare formulas, techniques, or devices, although most
converted to absolute values for the statistical analysis.
In their article in 2015 in American Journal of

Ophthalmology, Hoffer et al. recommended optimizing
the lens constant so that the arithmetic PE is zero, converting
PEs to absolute values, and comparing median absolute
errors because the distribution is not normal.1 Aristodemou
et al. in a Letter pointed out the deficiencies in the rec-
ommendations and proposed statistical comparisons be-
tween 2 formulas using the Wilcoxon signed-rank test and

with 3 or more the Friedman test.2–5 They also pointed out
that, if the P value is not statistically significant, post hoc
analysis can be performed to find out which group or groups
are responsible for the null hypothesis being rejected, which
might be used to correct for the multiple comparisons made
as recommended by Benavoli et al.6 We disagree with the
comments by Aristodemou et al. and the response offered by
Hoffer et al and will recommend current statistical tech-
niques that overcome errors in the P value of the not normal,
symmetrical, and heavy tailed PE distributions and that
allow the use of the original signed value of the spherical
equivalent (SEQ) PE (not the absolute value).2,7

In this study, we provided recommendations for de-
signing a prospective study and characterized the distri-
bution of PE and specific preoperative variables such as
preoperative refraction, axial length, corneal power
(keratometry), anterior chamber depth, and crystalline lens
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thickness to show their relationship and effect on PE.
Knowledge of the PE distributions is necessary to determine
the appropriate statistics for comparison of the outcomes
for formulas, procedures, and devices. We then proposed a
new method for statistical analysis of univariate SEQ PE.

DESIGNING A PROSPECTIVE STUDY
Inclusion criteria should include no preoperative or
postoperative pathology, 1 eye only from each patient, and
corrected visual acuity of greater than or equal 20/30 to
increase the likelihood that the postoperative refraction
sphere and cylinder is accurate to ±0.25 diopters (D) with
vertex distance specified. Multiple contributing surgeons
broaden the applicability of the results. Studies performed
by 1 surgeon have unique factors that can affect the results,
including patient population, incision design, IOL insertion
and placement, surgical instrumentation, and postoperative
medications.8,9 In particular, the method of capsulorhexis
(eg, manual, femtosecond laser, or Zepto) along with its size
and location have all been shown to not only affect the
strength of the bag but also the contraction that occurs
postoperatively.10,11 This contraction can cause axial and
lateral displacement of the IOL, which affects the lens
effectivity and the final postoperative effective lens position

(ELP) and refraction. Although changes in the SEQ power
(not astigmatic) of the cornea are stable by 3 to 4 months or
earlier,changes in the actual ELP, which directly affect the
refraction, are usually not stable until 6 to 12 months
postoperatively.12–14 The U.S. Food and Drug Adminis-
tration typically requires 12-month studies to assure the
stability of the results. For results to be reliable and re-
fractions stable, the 6-month visit is a good compromise.
Shorter postoperative periods for reporting results have
more variability and lower reliability.

Definitions
The proper statistical analysis of univariate (SEQ) and out-
comes after cataract, refractive, and corneal surgery is chal-
lenging, even for biostatisticians. The following discourse
provides the basis for evaluating PE using the appropriate
statistics and explains the interpretation for the reader. The
data that are used come from 2 large cataract surgery data-
sets.15 The metric used for determining the accuracy of re-
fractive outcomes is called PE.16 It is the difference in the actual
refraction and the predicted refraction using a specific formula:

Prediction Error (D) = Actual SEQ Refraction (D) –
Predicted SEQ Refraction (D) (1)

Figure 1. A normal probability
density distribution (Gaussian)
has 68.3% of the data within ±1
SD, 95.5% within ±2 SD, and
99.7% within ±3 SD.

Figure 2. Using dataset 1, the
distributions of axial length (blue
line), SEQ keratometry, anatomic
ACD, andCLT alongwith a normal
distribution (red line) (ACD = an-
terior chamber depth; CLT = crys-
talline lens thickness; MAD = mean
absolute deviation; SEQ= spherical
equivalent).
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This definition is opposite to what we have defined in
some earlier articles, but agrees with our most recent pub-
lication.15 We have chosen this definition because when the
PE is negative, it is myopic, just similar to the refraction, and
when PE is positive, it is hyperopic. This avoids the problem
of the PE having the opposite the sign of the SEQ refraction.
This definition of PE is true whether the refractions are

vectors representing an astigmatic refraction or scalar
values such as the SEQ refraction, but we will limit our
current discussion to scalar values. The SEQ refraction is
defined as the sphere plus one half of the cylinder in the
spherocylindrical form or one half of each cylinder in the
cross-cylinder form as follows:

SEQ = sphere + ½ cylinder = ½ (cylinder 1 + cylinder 2) (2)

Statistical Terms
Mean, SD, Mean Deviation, Median, and Mean Absolute
Error Calculating the mean PE is no different than calcu-
lating any other mean. The sample mean is the arithmetic

sum of the prediction errors (PEi) divided by the number
(n) of values in the dataset:

Mean PE = �x = Sum PEi/n (3)

Note that, inMicrosoft Excel, the function for the mean is
AVERAGE.
The SD of the PE is the square root of the mean of the sum of

the squares (root mean square [RMS]) about the mean of the
ðPEi � �xÞ values.17 For a normal distribution, 68.3% of data are
within ±1.0 SD, and inMicrosoft Excel, the function is STDEV.S:

SD of the PE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SumðPEi��xÞ2

n�1

q
(4)

Another statistical measure of variation is the mean
absolute deviation (MAD). The MAD of the PE is calcu-
lated by taking the mean of the absolute values of the PEi
about the mean. Note that, in Microsoft Excel 2010, the
function for the MAD is AVEDEV:

MAD = Sum | PEi � �x|/n (5)

Table 1. The 1% and 5% probability points of Gg.

Size of

Sample n’ DOF n*

Upper

Limit of Gg

Probability Points of Gg Lower

Limit of Gg Mean of Gg SD of GgUpper 1% Upper 5% Lower 5% Lower 1%

6 5 1.000 0.980 0.954 0.696 0.626 0.4472 0.8385 0.0786

11 10 1.000 0.941 0.911 0.710 0.656 0.3162 0.8180 0.0613

16 15 1.000 0.916 0.891 0.720 0.677 0.2681 0.8113 0.0516

21 20 1.000 0.902 0.879 0.728 0.691 0.2236 0.8079 0.0454

26 26 1.000 0.892 0.870 0.734 0.701 0.2000 0.8059 0.0410

31 30 1.000 0.884 0.864 0.739 0.709 0.1826 0.8046 0.0376

36 36 1.000 0.878 0.859 0.743 0.715 0.1690 0.8036 0.0350

41 40 1.000 0.873 0.855 0.746 0.720 0.1581 0.8029 0.0328

46 45 1.000 0.869 0.851 0.749 0.725 0.1491 0.8023 0.0310

61 60 1.000 0.865 0.849 0.751 0.728 0.1414 0.8019 0.0295

76 76 1.000 0.863 0.839 0.759 0.741 0.1155 0.8005 0.0242

101 100 1.000 0.846 0.834 0.764 0.748 0.1000 0.7999 0.0210

501 500 1.000 0.820 0.814 0.783 0.776 0.0447 0.7983 0.0095

1001 1000 1.000 0.813 0.809 0.787 0.782 0.0316 0.7981 0.0067

*Degrees of freedom

Figure 3. A: The correlation of SEQ preoperative refractions and axial lengths for 4710 patients of the 5200 cases, before affected by
cataract. The axial length (blue line) is the primary factor determining the extreme peak of emmetropia (60%, green line). B: The peak for
SEQ preoperative refraction is 8% higher than the axial length peak due to the inverse correlation (black dots) of keratometry and axial
length from 22 to 24.5 mm (AL = axial length; K = keratometry; SEQ = spherical equivalent).
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For a normal distribution, the MAD is 0.7979 × SD and
comprises 57.51% of the cases.
Another statistic often reported is the median of the

absolute values (Median in Excel) where the number of
values above and below is equal (MedAE). The MedAE is
0.6745 × SD, where exactly 50% of the absolute values are
within this value and 50% outside of it.17

As we have defined earlier, the mean PE �x is the ar-
ithmetic mean of the data. We will see that the datasets
are rarely normal because our goal is to have a PE of zero, so
formulas, procedures, and devices have (1) peaks that are
much higher and narrower than a normal distribution and
(2) tails that are usually heavier. The asymmetry or skewness
of the PE distribution is usually minimal because the chances
of myopic or hyperopic PEs are formulated to be equal. Even
though the PE distributions are not normal, it will be helpful
to review some of the characteristics of a normal distribution
for comparison.
Normal Distribution When a probability density dis-

tribution is normal (Gaussian) as shown in Figure 1, 68.3%
of the data are within ±1 SD, 95.5% within ±2 SD, and
99.7% within ±3 SD. Note that, in Microsoft Excel, the
function for the SD of a population is STDEV.P.

Kurtosis, Skew (Asymmetry), and Geary Ratio
As stated earlier, the values given for the percentage of cases
within ±1 SD or for 1 MAD are only true if the distribution
is normal. We will see from our analysis of actual datasets
that the PE distribution is not a normal distribution. There
are 2 properties of any distribution that are usually tested:
symmetry (skewness) and kurtosis (tailedness). If the data
are not symmetrical about the mean and have a longer tail
to the right, they are said to be positively skewed (Figure 2, A).
By contrast, if the tail to the left is longer, the data are said to be
negatively skewed. The standardized measure for skewness
(G1) for a population in Excel (Skew) and in most modern
software packages is the adjusted Fisher-Pearson standardized
moment coefficient, given by the following formula:

G1 ¼ n
ðn� 1Þðn� 2Þ

Xn

i¼1

�
xi � �x

s

�3

(6)

If skewness is positive, the data are positively skewed, and
if negative, the data are negatively skewed. A rule of thumb
is that:

1. If skewness is less than �1 or greater than +1, the
distribution is highly skewed.

2. If skewness is between �1 and �½ or between +½
and +1, the distribution is moderately skewed.

3. If skewness is between�½ and +½, the distribution is
approximately symmetric.

Another characteristic of the normal distribution for
which we can test is kurtosis. In probability theory and
statistics, kurtosis (from Greek: kurtό§, kyrtos or kurtos,
meaning curved or arching) is a measure of the tailedness of
the probability distribution of a real-valued random vari-
able. The standard measure of a distribution’s kurtosis,
originating with Karl Pearson, is a scaled version of the
fourth moment of the distribution.18 This number is related
to the tails of the distribution, not its peak; hence, the
sometimes-seen characterization of kurtosis as peakedness
is incorrect.19 For this measure, higher kurtosis corre-
sponds to greater extremity of deviations (or outliers) and
not the configuration of data near the mean.
One measure used for this characteristic is the excess

kurtosis function:

g ¼ m4
m2

2
� 3; (7)

where, the fourth momentm4 ¼
Pn

i¼1
ðxi��xÞ
n

4

andm2
2 is the

second moment (variance) squared. By subtracting 3, g is
zero for a normal distribution and increases above zero
with increasing leptokurtosis. In Excel, the kurtosis func-
tion is KURT.
Although we will see that none of the formula PE datasets

are normal, we should mention that Shapiro-Wilk test for
univariate normality and the Anderson-Darling test for
multivariate normality have the best power for a given
significance using Monte Carlo simulations. An older test,
proposed by Geary more than 100 years ago, compares the
ratio (Gg) of the MAD with the SD.20 The normal value for
MAD/SD is

ffiffiffiffiffiffiffiffi
2
=p

q
¼ 0:80, and departure from this value

for a given sample size determines the P value for not being
normal. This ratio is easy to compute, and the values are
readily available, so it is a quick way of confirming that the
distribution is not normal. Table 1 lists the 1% and 5%
probability points of the Gg distribution for samples from 6
to 1001. We will see that all 11 formulas have PEs for both
datasets that are far below the 0.782, indicating they are not
normal at a P value much less than .01.
Distributions of Biometric Measurements–Axial

Length, Keratometry, Anatomic Anterior Chamber
Depth, and Lens Thickness Using dataset 1, the distri-
butions of axial length, SEQ keratometry, anatomic anterior
chamber depth, and crystalline lens thickness along with a

Figure 4. The distributions by surgeon of the individual lens con-
stants for both datasets; 81%of dataset 1 and 86%of dataset 2 had
individual surgeon lens constants that were within ±0.10 D of the
mean.
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normal distribution (in red dots) are shown in Figure 2. For
reference, a true normal density distribution will have a
peak (at the mean) of 0.40. Notice that the axial length has a
narrower, higher peak (0.52) than normal and is skewed to
the right (toward longer axial lengths). The other 3 dis-
tributions are normal.
Figure 3A shows the correlation of SEQ preoperative

refractions and axial lengths (for 4710 patients of the 5200

cases) before affected by cataract. The axial length (blue
line) is the primary factor determining the extreme peak of
emmetropia (60%, green line). The peak for SEQ pre-
operative refraction is 8% higher than the axial length peak
due to the inverse correlation (black line) of keratometry
and axial length from 22 to 24.5 mm (Figure 3, B). In this
region, as the axial length increases, mean keratometry
decreases, balancing their effects and, thereby, increasing

Figure 5. The PEs varied from
0.400 to 0.540 D for each surgeon
who contributed more than 30
cases: SA60AT IOL (A) and
SN60WF IOL (B). There was no
significant correlation between
the number of cases and the SDof
the PE or the individual surgeon’s
lens constant, although the
spread for both decreased as the
number of cases contributed in-
creased (PE = prediction error).

Figure 6. The actual PE distributions for 11 formulas from the 5200 cases in dataset 1 (blue line) and a normal distribution (red line). The
mean, SD, MAD, kurtosis, skewness, and Geary ratio (MAD/SD) are shown on the inset for each graph (PE = prediction error).
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the prevalence of emmetropia. Sorsby and Leary and later
Rubin called this process emmetropization.21,22

The current emphasis will be restricted to the proper
statistical methods for comparing means and SDs for PEs
to determine the probabilities of whether values are
different. For example, the statistics could be used to
determine if an IOL power calculation formula per-
formed better than another, a surgical technique was
superior to another, or a laser performed better than
another.

Characterizing PE Distributions Over the past 43 years, we
have been fortunate to have been involved in reporting
cataract outcomes and have hundreds of datasets with
the raw data. The most recent publication with Melles
et al. is representative of the biometry and SEQ PE
distributions for 11 formulas.15 Dataset 1 comprised of
5200 single eyes with a spherical IOL (SA60AT), and dataset
2 comprised of 13 301 single eyes with an aspheric IOL
(SN60WF) for SEQ PE.

Lens Constant Optimization
The first step in the analysis is to adjust the arithmetic mean
of the PE to zero for each formula by adjusting the lens
constant (to at least to 6 decimal places 0.000000). This
requires knowledge of which IOLs were implanted in each
eye and access to the formulas to calculate the predicted
refraction for each patient and to be able to optimize the
lens constant. In Excel you must have the Add In Analysis
ToolPak installed; under the Data Tab, there will be a Solver
in the Analyze Section. You set the cell with the Target of
the sum of the PEs to zero by changing the cell with the
Lens Constant.
Ideally, although one should optimize the lens constant

for each surgeon in the dataset, the benefit is minimal, and
the effort is much greater. We had 95 surgeons and 127
surgeons in datasets 1 and 2, respectively, with implanta-
tion occurring between July 1, 2014, and December 31,
2015. In dataset 1 the difference in the lens constant by
optimizing all 5200 cases as one surgeon vs each of the 95

Figure 7. The absolute PE distributions for 11 formulas from the 5200 cases in dataset 1 (blue line) and a normal distribution (red line). The
mean, SD, MAD, kurtosis skewness, and Geary ratio (MAD/SD) are shown on the inset for each graph (PE = prediction error).
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resulted in SDs of the PE of 0.4726 individually and 0.4791
globally, a difference of 0.0065 D, which is not clinically or
statistically significant. Because the difference is negligible,
it is acceptable to determine a single global lens constant
that optimizes the PE to zero. The distributions by surgeon
of the individual lens constants are shown in Figure 4 for
both datasets; 81% of dataset 1 and 86% of dataset 2 had
individual surgeon lens constants that were within ±0.10 D
of the mean. The PEs varied from 0.400 to 0.540 D for each
surgeon who contributed more than 30 cases (Figure 5).
There was no significant correlation between the number of
cases and the SD of the PE or the individual surgeon’s lens
constant, although the spread for both decreased as the
number of cases contributed increased.
Figure 6 shows the actual PE distributions for 11 for-

mulas from the 5200 cases in dataset 1 in blue and a normal
distribution in red. The mean, SD, MAD, kurtosis, skew-
ness, and Geary ratio (MAD/SD) are shown on the inset for
each graph.
Figure 7 shows the absolute PE distributions for 11

formulas from the 5200 cases in dataset 1 in blue and a
normal distribution in red. The mean, SD, MAD, kurtosis
skewness, and Geary ratio (MAD/SD) are shown on the
inset for each graph.
From Table 1, by taking the ratio of the MAD/SD (Gg),

one might determine whether a dataset is not normal at the
1% probability. In both datasets, we have well more than

1001 cases, so for a normal distribution, there is a 0.01
probability of a value less than 0.782 (bottom of column 7).
We see from Tables 2 and 3 and Figure 4 that all our
formulas are far less than this value and, therefore, not
normal. Furthermore, we see that converting to absolute
values exaggerates the kurtosis, introduces significant
skewness (asymmetry), and lowers the Geary ratio (Gg)
even further.
In these datasets, none of the PE distributions with any

formula are normal. The peak is always higher than a
normal distribution, and the tails are always heavier
(higher). The distributions (not absolute) are very sym-
metrical with skewness values within ±0.50 D. It is not
surprising that the peaks are higher than normal. The goal
of an IOL calculation formula is to have a PE of zero: a
perfect formula would have a 100% peak at zero. The better
the formula, the closer it is to that goal.
However, in the absolute distributions in Figure 7, the

higher peak and tails are due to moving some of the in-
termediate PEs (1.0 to 3.0 SDs) to the peak and the re-
mainder to the tails. In Figures 6 and 7, the area below the
red line (normal distribution) must equal the area above the
red line because the area under the probability curve must
be 1.0 for both the blue and red curves.
In Table 4, we can see the exact amounts that have been

moved for each interval of the SDs for dataset 2 (N = 13 301).
The cases within ±1 SD for all formulas are higher than the

Table 2A. Prediction error distribution parameters (N = 5200).

Formula Mean SD (D) ± 1.0 SD (%) MAD/SD Kurtosis Skew

Barrett 0.000 0.424 72.87 0.755 2.778 �0.152

Olsen 0.000 0.443 71.94 0.761 1.496 0.120

Haigis 0.000 0.449 71.88 0.768 1.176 �0.003

Holladay 1 0.000 0.453 72.08 0.768 1.039 �0.043

Holladay 1 WK 0.000 0.454 72.46 0.771 0.947 �0.071

Holladay 2 0.000 0.456 72.46 0.765 1.108 �0.075

SRK/T 0.000 0.471 71.71 0.771 1.020 �0.033

Hoffer Q 0.000 0.474 70.94 0.770 0.974 �0.124

Hoffer Q WK 0.000 0.476 70.87 0.771 0.830 �0.157

SRK/T WK 0.000 0.479 71.75 0.772 0.974 �0.124

Haigis WK 0.000 0.506 70.04 0.781 0.612 �0.107

Table 2B. Absolute prediction error distribution parameters (N = 5200).

Formula Mean SD (D) MAD (D)

Median

Abs (D) ± 0.25 D (%) ± 0.50 D (%) ± 0.75 D (%) ± 1.00 D (%)

MAD/

SD Kurtosis Skew

Barrett 0.320 0.279 0.206 0.252 49.8 80.0 92.7 97.2 0.739 9.017 2.041

Olsen 0.337 0.287 0.217 0.268 47.1 78.0 91.5 96.7 0.754 4.389 1.665

Haigis 0.345 0.287 0.218 0.278 45.3 76.3 90.9 96.8 0.760 3.758 1.559

Holladay 1 0.348 0.290 0.222 0.281 45.1 75.9 90.1 96.9 0.764 3.253 1.482

Holladay 1

WK 0.350 0.289 0.221 0.283 44.6 75.8 90.1 96.8 0.766 3.033 1.455

Holladay 2 0.349 0.294 0.225 0.277 46.1 75.3 90.4 96.6 0.766 3.295 1.504

SRK/T 0.363 0.300 0.230 0.290 43.7 74.1 89.5 96.0 0.765 3.270 1.490

Hoffer Q 0.365 0.302 0.234 0.292 43.7 73.0 89.4 96.3 0.774 3.193 1.436

Hoffer Q WK 0.367 0.302 0.234 0.295 43.4 72.9 89.0 96.0 0.776 2.739 1.380

SRK/T WK 0.370 0.305 0.234 0.298 42.4 73.5 88.8 95.9 0.766 3.059 1.454

Haigis WK 0.395 0.317 0.248 0.321 40.3 69.6 86.8 95.0 0.782 2.291 1.296
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normal, ranging from a high of 3.46% (formula 2) to a
low of 1.72% for formula 11 (first column). Those cases
came from the 1 to 3 SDs that are all negative (lower than
the normal). The cases with a PE above 3 SD are above
the normal (positive), which explains why the distri-
butions are considered heavy tailed. Notice in the last
column that the sum in each row of the percentages of
variations of the distributions from normal is zero for
each formula.

STATISTICAL COMPARISON OF PE FOR IOL
POWER CALCULATION FORMULAS
There are 2 main types of statistical comparison we will
consider: (1) dependent paired samples from the same
group and (2) independent samples that are from 2 dif-
ferent groups. The typical comparison of the power cal-
culation formulas is the first type, which involves the use of
1 dataset for which the actual refraction is compared with
the predicted refraction for each formula. Because only 1
dataset is used for all formulas, the comparisons are paired
dependent samples for which the PEs for 2 formulas are
used for each patient.
The second type of comparison of independent samples

from 2 different groups might be comparisons of 2 different
IOLs, surgical techniques, or devices such as femtosecond
laser vs manual capsulorhexis. When independent, the
samples should be randomized and might be slightly dif-
ferent in the total number of cases.

When analyzing data of the first type, where, for example,
the PE of IOL calculation formulas in the same group is the
random variable used to assess the performance, we will
show that using the SD of PE is the single, most accurate
assessment of performance and accurately predicts other
measures such as the percentage of cases within an interval
(eg, ±0.50), the MAD, and the median. We will also provide
the appropriate, contemporary methods of determining the
whether the performance differences in the SDs are sta-
tistically significant.
As shown in Equation 4, the SD is the square root of the

mean of the sum of the squares (RMS) divided by the mean.
The RMS value is used throughout science in every dis-
cipline to accurately compare differences in complex
shapes, surfaces, or waveforms. In electrical engineering,
the energy of an alternating sinusoidal current can be
compared with the energy of a constant direct current using
the RMS value. The energy of a sinusoid with amplitude of 1
has an RMS value of 70.7% of its peak and is equal in energy
to the DC value of this amplitude. A perfect wavefront is a
circular flat disk, but the ocular wavefront of the human eye
is irregular and looks similar to a deformed potato chip. By
computing the RMS value of the deviations from the perfect
disc, we find a mean value of 0.38 ± 0.14 mm in the normal
human.23 Even though every human has a unique wave-
front, the RMS value can be used to compare the visual
quality between individuals with different wavefronts. In
statistics, the RMS value about the mean is the SD. It allows

Table 3A. Prediction error distribution parameters (N = 13 301).

Formula Mean SD (D) ± 1.0 SD (%) MAD/SD Kurtosis Skew

Barrett 0.000 0.404 71.6 0.770 1.192 �0.012

Olsen 0.000 0.424 71.7 0.767 1.274 0.146

Haigis 0.000 0.437 70.9 0.773 1.063 0.067

Holladay 1 WK 0.000 0.439 70.6 0.774 0.956 �0.055

Holladay 2 0.000 0.450 70.7 0.778 0.858 �0.050

Holladay 1 0.000 0.453 70.7 0.775 0.926 0.036

Hoffer Q WK 0.000 0.461 70.4 0.781 0.747 �0.129

SRK/T 0.000 0.463 70.4 0.778 0.834 �0.080

SRK/T WK 0.000 0.467 70.5 0.777 0.817 �0.056

Hoffer Q 0.000 0.473 70.3 0.780 0.687 �0.071

Haigis WK 0.000 0.490 70.0 0.782 0.688 �0.017

Table 3B. Absolute prediction error distribution parameters (N = 13 301).

Formula Mean SD (D) MAD (D)

Median

Abs (D) ± 0.25 D (%) ± 0.50 D (%) ± 0.75 D (%) ± 1.00 D (%)

MAD/

SD Kurtosis Skew

Barrett 0.311 0.258 0.197 0.252 49.8 80.8 93.7 97.8 0.762 3.883 1.550

Olsen 0.325 0.272 0.208 0.258 48.8 78.7 92.5 97.4 0.762 3.975 1.578

Haigis 0.338 0.277 0.212 0.275 46.1 77.0 91.9 97.3 0.767 3.697 1.504

Holladay 1 WK 0.340 0.277 0.214 0.275 45.9 76.6 91.7 97.2 0.771 3.360 1.459

Holladay 2 0.350 0.283 0.218 0.287 44.5 75.4 90.9 97.0 0.770 3.117 1.425

Holladay 1 0.351 0.287 0.221 0.285 44.7 75.0 90.7 96.8 0.771 3.204 1.445

Hoffer Q WK 0.360 0.288 0.223 0.295 43.1 74.0 90.2 96.5 0.774 2.856 1.375

SRK/T 0.360 0.291 0.225 0.292 43.3 74.0 90.0 96.5 0.774 3.082 1.408

SRK/T WK 0.363 0.294 0.227 0.295 43.1 73.6 89.7 96.5 0.775 3.001 1.395

Hoffer Q 0.369 0.296 0.230 0.303 42.5 73.0 89.3 96.1 0.776 2.601 1.347

Haigis WK 0.383 0.305 0.237 0.318 40.6 71.0 88.3 95.6 0.777 2.744 1.342
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comparison of different shaped probability distributions
with a single number.
For any probability density distribution, the total area

under the curve is 1. The argument that the SD weighs the
cases by the square of values is not true; on the contrary, it
takes the square root of themean of the sum of the squares so
that the values are appropriately weighted and the area under
the curve is 1. For a normal distribution, the ratio of the
MAD/SD is 0.80, so the MAD is only 20% less than the SD.
Perhaps even more important is that the variance of the

random variable (PE) can be expressed as a function of the
variances and covariances of its constituent pieces (axial
length, keratometry, predicted ELP, and pupil size).24

Norrby identified 9 parameters that contributed more
than 1% to the total PE, with the ELP accounting for 35%, the
postoperative refraction 27%, the axial length 17%, corneal
power 11%, and the pupil size 8% of the total PE. With other
measures such as MAD and median, such an analysis is not
possible because the total is not equal to the sum of the parts.
Because the PE measures are (1) dependent and (2) not

normal, the standard F test for comparing SDs can not be
used. It requires independence and normality. New per-
spectives in statistics have shown that, when not normal
distributions are fairly symmetrical and heavy tailed,

comparing the variances of 2 dependent variables can be
improved by using the heteroscedastic (HC) method, a
simple extension of the Morgan-Pitman test to the
Spearman modification of the Morgan-Pitman test.25 It is
based partly on a HC method for making inferences about
Pearson correlation.26

Performing these calculations is not practical for most
clinicians, but fortunately, open access software is available
from The R Project for Statistical Computing. Figure 8
shows, for the datasets 1 and 2 comprising 5200 and 13 301
eyes, the P values for each pair of variances for the 11
formulas for (1) the HC method, (2) the older Morgan-
Pitman test based on Pearson correlation (MP), (3) the
modification of the Morgan-Pitman suggested by
McCulloch (1987) where Pearson correlation is replaced by
Spearman correlation (SC), and (4) the Friedman test with
the Nemenyi post hoc analysis used on the absolute
values.27–29 In Figure 8, we see that the Friedman test with
the Nemenyi post hoc analysis using the absolute values for
the PE (yellow points) results in much higher P values,
especially when the paired formula SDs differences are
lower. We also see that, in dataset 2 with 13 301 cases, the
Friedman P value goes back up at the higher values (have an
inflection). The cause of the erratic P values with the
Friedman test is due primarily to the asymmetrical shape of
the absolute values, the improper weighting of the values
using the absolute values, and the post hoc analysis in the
presence of heavy tails (Figure 7). Hoffer et al. had rec-
ommended the bootstrap method to deal with certain issues
with datasets.1 However, the erratic nature of the P values is
exactly why Athreya states, “Unless one is reasonably sure
that the underlying distribution is not heavy tailed, one
should hesitate to use the naive bootstrap (post hoc
analysis).”30 For the methods using the SD (HC, MP, and
SC), there is no reversal of the P values. The superiority of
the HC method over the MP and SC methods becomes
more apparent the smaller the sample size.25 The original
Morgan-Pitman test is based in part on testing the hy-
pothesis of a zero Pearson correlation. The conventional
method assumes homoscedasticity. As we move toward

Table 4. Difference from normal distribution (N = 13301).

Table 5. Matrix of paired standard deviation differences for dataset 1 (N = 5200).

Formula SD

SD

Dif

SD

Dif

SD

Dif

SD

Dif

SD

Dif

SD

Dif

SD

Dif

SD

Dif

SD

Dif

SD

Dif

SD

Dif

Barrett 0.424 0.000

Olsen 0.443 0.018 0.000

Haigis 0.449 0.025 0.006 0.000

Holladay 1 0.453 0.029 0.011 0.004 0.000

Holladay 1

WK

0.454 0.030 0.012 0.005 0.001 0.000

Holladay 2 0.456 0.032 0.014 0.007 0.003 0.002 0.000

SRK/T 0.471 0.047 0.028 0.022 0.018 0.017 0.015 0.000

Hoffer Q 0.474 0.050 0.031 0.025 0.021 0.019 0.017 0.003 0.000

Hoffer QWK 0.476 0.051 0.033 0.027 0.023 0.021 0.019 0.005 0.002 0.000

SRK/T WK 0.479 0.055 0.037 0.030 0.026 0.025 0.023 0.008 0.005 0.003 0.000

Haigis WK 0.506 0.082 0.064 0.057 0.053 0.052 0.050 0.036 0.033 0.031 0.027 0.000

Barrett Olsen Haigis Holladay 1 Holladay 1 WK Holladay 2 SRK/T Hoffer Q Hoffer Q WK SRK/T WK Haigis WK
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heavy-tailed distributions, heteroscedasticity becomes an
issue. In effect, an incorrect estimate of the standard error is
being used. The HC method addresses this problem. The
SD is not only the best random variable to use statistically
but also accurately predicts other key metrics. The first
relationship that the SD accurately predicts is the per-
centage of cases within various intervals, such as within
±0.25, ±0.50, ±0.75, and ±1.00 D as shown in Figure 9.
The R2 values are extremely high, ranging from 0.9173 to

0.9975. The SD also predicts the MAD and median even
more accurately as shown in Figure 10, with the R2 values
are above 0.976. Table 5 summarizes the differences in each
pair (55) of the SDs for the 11 formulas. The differences in
SD for the 11 formulas range from a low of 0.001 D to a high
of�0.082 D. The corresponding adjusted P values using the
HC method are tabulated in Table 6. The P values have
been adjusted because we conducted multiple comparisons
on the same dependent variable with the 11 formulas. The
chance of committing a type I error increases with multiple
comparisons, thus increasing the likelihood of determining
a significant result by pure chance. To correct for this and
protect from type I errors, the Holm correction has been

performed. The older Bonferroni correction can be criti-
cized for being overly conservative, thus potentially ex-
cluding results of real significance.31,32 The adjusted P values
should be the values reported.
In Table 5, for dataset 1 (N = 5200), the smallest differences

in SD correspond roughly with the 19 highest adjusted
P values in Table 6 (pink-shaded boxes) that are above 0.05
and are not considered statistically significant. The adjusted
P values along the diagonal are 1.0 because the probability of
a formula being the same as itself is 1.0. For dataset 2
(N = 13 301), because the sample size was much larger, there
were only 2 pairs of adjusted P values above 0.05.

DETERMINING MODIFIED MP P VALUE OF 2 SDS
FOR 2 INDEPENDENT DATASETS
The second type of statistical comparison using 2 or more
independent datasets would be used to compare the aspheric
(13 301) and nonaspheric (5200) IOLs. A generalization of
the HC version of the Morgan-Pitman test based on Pearson
correlation (MP) is used.26,27 The aspheric IOL with 13 301
cases that reflects current aspheric IOLs has a lower SD
(0.404 D) than the nonaspheric IOL (0.424 D) with 5200

Figure 8. The Friedman test with the Nemenyi post hoc analysis using the absolute values for the PE (yellow points) results in much higher P values,
especially when the paired formula SDs differences are lower. In dataset 2with 13301 cases, the FriedmanP value goes back up at the higher values
(has an inflection) (HC = heteroscedastic; MP = the older Morgan-Pitman test based on Pearson correlation; SC = Spearman correlation).

Table 6. Matrix of paired adjusted HC P values for dataset 1 (N = 5200).

HC = heteroscedastic; Shaded Boxes = P value > 0.05 and are not considered statistically significant.
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cases and a more accurate PE as predicted by Norrby.24 The
difference in SDs of 0.02 D results in 80.8% of PEs within
±0.50 D with the aspheric IOL vs 79.8% with the nona-
spheric, a difference of 1.0% (P = .005). The smaller PE of the
aspheric IOL is a result of the reduction in ocular spherical
aberration. This reduction of spherical aberration reduces
the influence of the pupil size on the effective IOL power for
an individual patient and improves the quality of vision.24,33

In fact, Norrby predicted in 2008 that the pupil size would be
8% of the SD, and we found it to be 5% (0.02/0.40).
If there were more than 2 independent random variables

compared (3 or more IOLs), the P values must be adjusted
because we conducted multiple comparisons on the same
independent random variable (IOL type in this case) and
the chance of committing a type I error increases. The
Holm, Hommel, and Hochberg methods all represent a
better balance excluding spurious positives without ex-
cluding true positives than the Bonferroni.31,32,34,35

Minimum Sample Size for Statistical Significance
A statistical significance with a P value of 0.01 is usually
considered excellent and 0.05 is acceptable as a scientific

minimal standard. The best way of determining a mini-
mum sample size for statistical significance is empirically
from previous studies. In Figure 8, dataset 1 with 5200 cases
was able to show a difference of 0.02 D at a P value of 0.01
and dataset 2 with 13 301 cases was able to show a dif-
ference of 0.007 D at a P value of 0.01. Using the datasets 1
and 2, we can use sequentially ordered sampling to reduce
the size of the sample and compute the HC P value.
Figure 11 shows the number of cases and the resulting P
values. The number of cases to achieve the same level of the
difference in the SDs of 0.02 D for P value of approximately
0.01 for both datasets is between 300 and 700.
In this article, we have discussed the key elements for de-

scribing and analyzing the accuracy of IOL calculation for-
mulas. We have (1) outlined the criteria for patient and data
inclusion, (2) recommended the appropriate sample size, (3)
reinforced the requirement that the formulas be optimized to
bring the mean error to zero, (4) demonstrated why the SD is
the single best parameter to characterize the performance of an
IOL power calculation formula; it determines the percentage of
cases within a given interval, the MAD, and the median of the
absolute values; and (5) proposed that the HC statistical

Figure 9. The SD accurately predicts the percentage of cases within various intervals, such as ±0.25, ±0.50, ±0.75, and ±1.00 D: dataset 1 (A)
and dataset 2 (B). The R2 values are extremely high, ranging from 0.9173 to 0.9975.

Figure 10. The SD also predicts the MAD and median even more accurately with the R2 values are above 0.976 (AE = absolute error; PE =
prediction error).
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method is the preferred method of analysis, especially for
smaller datasets; it is much better at controlling the probability
of a type I error when the marginal distributions have heavy
tails but are still symmetric. Details for downloading the open
access software from The R Project for Statistical Computing
can be found at https://www.r-project.org/ and details re-
garding how to implement HC analysis are in the README
files at https://osf.io/nvd59/quickfiles.

WHAT WAS KNOWN
� Prediction error in diopters, the difference between the SEQ

of the actual and predicted refraction, is used to measure the
accuracy of intraocular lens power calculation formulas.

� The prediction error is usually converted to absolute values,
creating a random variable that is not normal, asymmetric,
and heavy tailed; the formulas are then compared using
decades-old statistical methods that are erratic and unreli-
able for predicting the P values for a type 1 error.

� Other measures such as mean absolute deviation, median
absolute error, mean absolute error, and percentages within
various dioptric intervals are often reported to ameliorate this
variability and limitation when using absolute values, but they
also do not eliminate the problem.

WHAT THIS PAPER ADDS
� The original, signed prediction error is the random variable

that is not normal, symmetric, and heavy tailed.
� The SD is the single most accurate measure of prediction

error when comparing intraocular lens power calculation
formulas; it predicts the results with other measures such as
thosementioned earlier with extremely high R2 values ranging
from 0.9173 to 0.9975.

� The SD of the prediction error allows the use of modern,
contemporary heteroscedastic statistical methods spe-
cifically intended for use with not normal, symmetric,
heavy tailed random variables, providing accurate P val-
ues for type 1 errors and a valid method for comparing the
formulas.
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